Canonical property of representations of Gaussian processes with singular Volterra kernels

Yuji HIBINO
Faculty of Science and Engineering, Saga University, 840-8502, Saga, JAPAN

Masuyuki HITSUDA
Faculty of Science, Kumamoto University, 860-8555, Kumamoto, JAPAN

Abstract
We consider the Gaussian process X_λ defined by parameterizing a singular kernel of Volterra-type introduced in [1]. The kernel has a close connection with the noncanonical representation. The result is that the representation is canonical (resp. noncanonical) if $\lambda < 1/2$ (resp. $\lambda > 1/2$), being independent of the choice of g of a class of functions (Theorem 3).

1 Introduction
Let $X = \{X(t); t \in [0,1]\}$ be a centered Gaussian process, which has a representation such as

$$X(t) = \int_0^t F(t,u)dB(u), \quad t \in [0,1],$$

(1)

by the use of a Brownian motion $B = \{B(t); t \in [0,1]\}$. If it is satisfied that $H_t(X) \equiv LS\{X(s); s \leq t\} \equiv$ the linear space spanned by $\{X(s); s \leq$
(t) is equal to $H_t(B)$, for each $t \in [0,1]$, then the representation of X is called canonical. The concept was introduced by Lévy [4] and soon later a systematic theory was developed by Hida [2].

In the previous paper [1], we have constructed a noncanonical representation of a Brownian motion associated with a certain Volterra-type operator K_g. Let us explain the circumstance in detail. For any natural number N and for any linearly independent system $g = \{g_1, g_2, \ldots, g_N\}$ in $L^2[0,t]$, $t > 0$, the Gramian matrix $G(t) = \left(\int_0^t g_i(u)g_j(u)du\right)$ is regular for any $t > 0$. Thus we have defined the Volterra integral operator K_g whose integral kernel is

\[
k_g(s,u) = \begin{cases}
2 \sum_{i,j=1}^N g_i(s)G^{ij}(s)g_j(u), & s \geq u, \\
0, & s < u,
\end{cases}
\]

where $(G^{ij}(t)) = G^{-1}(t)$. The representation

\[
\bar{B}_g(t) = \int_0^t (I - K_g^*)1_{[0,t]}(u)dB(u), \quad t \in [0,1],
\]

is noncanonical and the process \bar{B}_g is a Brownian motion satisfying

\[
H_t(\bar{B}_g) = H_t(B) \ominus LS \left\{ \int_0^t g_i(u)dB(u); i = 1, \ldots, N \right\}
\]

for each $t \in [0,1]$. Lévy’s examples in [5] of noncanonical representations of a Brownian motion are included in the representations above by taking $N = 1$ and $g_1(u) = u^q$ with $q > -1/2$.

In the present article, the authors will provide an additional property of the Volterra operator K_g. That is to say, we shall consider the operators $I - \lambda K_g^*$ parameterized by the real number λ. The main result is Theorem 3, which says that the Gaussian process having the representation

\[
X_{\lambda}(t) = \int_0^t (I - \lambda K_g^*)1_{[0,t]}(u)dB(u),
\]

is canonical (resp. noncanonical) if $\lambda < 1/2$ (resp. $\lambda > 1/2$). In the case of $\lambda = 1/2$, only for the case $N = 1$ the complete result will be given in Section 3.

The key lemma for the proof of the main result may have its interest. Namely, the probability laws of X_λ and $X_{1-\lambda}$ are identical and they give a
pair of canonical and noncanonical representations. As a special case \(\lambda = 1 \),
they are evidently a pair of canonical and noncanonical representations of a Brownian motion.

2 Parameterization of the operator

Let us consider the process \(X_\lambda \) represented by (5).

Proposition 1 For \(\lambda \leq 0 \), the representation (5) of \(X_\lambda \) is canonical.

Proof: For any \(t \in [0,1] \), pick up an \(\alpha \) satisfying
\[
\int_0^t (I - \lambda K_g^*)[0,\ell](u)\alpha(u)du = 0, \quad t \in [0,1],
\]
equally,
\[
\int_0^t 1_{[0,\ell]}(u)(I - \lambda K_g)\alpha(u)du = 0, \quad t \in [0,1].
\]
This is reduced to
\[
(I - \lambda K_g)\alpha(s) = 0, \quad s \in [0,t].
\]
For such an \(\alpha \) in \(L^2[0,t] \),
\[
(\alpha,(I - \lambda K_g)^*\alpha)_t = ((I - \lambda K_g)\alpha,\alpha)_t = 0,
\]
where \((\cdot,\cdot)_t \) stands for the inner product in \(L^2[0,t] \). Thus
\[
(\alpha,\alpha)_t = \lambda(\alpha,K_g^*\alpha)_t.
\]
On the other hand, because the operator \((I - K_g^*) \) on \(L^2[0,t] \) is an isometric one,
\[
(K_g^*\alpha,K_g^*\alpha)_t = 2(\alpha,K_g^*\alpha)_t.
\]
Therefore
\[
2(\alpha,\alpha)_t = \lambda(K_g^*\alpha,K_g^*\alpha)_t.
\]
This means that, for \(\lambda \leq 0 \), \(\alpha \) must be identically zero. Thanks to the criterion of the canonical representation [3, Theorem 4.4], the statement is proved.

The following lemma is interesting.
Lemma 2 The probability law of $X_{1-\lambda}$ is the same as that of X_λ.

Proof: Since $(I - K_{\mathbf{g}}^*)$ is an isometric operator,

$$(I - K_{\mathbf{g}})(I - K_{\mathbf{g}}^*) = I.$$

By an easy calculation, we find

$$\left(I - \lambda K_{\mathbf{g}} \right) \left(I - \lambda K_{\mathbf{g}}^* \right) = \left(I - (1 - \lambda) K_{\mathbf{g}} \right) \left(I - (1 - \lambda) K_{\mathbf{g}}^* \right). \quad (13)$$

Due to (5),

$$E[X_\lambda(t)X_\lambda(s)] = \left((I - \lambda K_{\mathbf{g}}) 1_{[0,t]} , (I - \lambda K_{\mathbf{g}}^*) 1_{[0,s]} \right)$$

$$= \left((I - (1 - \lambda) K_{\mathbf{g}}) 1_{[0,t]} , (I - (1 - \lambda) K_{\mathbf{g}}^*) 1_{[0,s]} \right)$$

$$= E[X_{1-\lambda}(t)X_{1-\lambda}(s)].$$

Theorem 3 For $\lambda < 1/2$, the representation (5) of X_λ is canonical, and for $\lambda > 1/2$, the representation is noncanonical.

Proof: As it is known that the operator norm $\|K_{\mathbf{g}}\| \leq 2$ (cf.[1, Theorem 1.1]), X_λ is clearly canonical for $|\lambda| < 1/2$, because $(I - \lambda K_{\mathbf{g}})\alpha(s) = 0$, for $s < t$, has the trivial solution only. Thanks to Proposition 1, the former part of the statement is proved. The latter part is due to Lemma 2 and uniqueness of the canonical representation stated in [3, Theorem 4.1].

3 Special case : $N = 1$

The last theorem of the previous section leaves out the case of $\lambda = 1/2$. The case of $N = 1$, we will find that the representation (5) of $X_{1/2}$ is canonical for any square integrable function g. 4
Theorem 4 Let X_λ be defined as (5) by the use of $g = \{g\}$ in (2). Then the representation (5) is noncanonical, if and only if $\lambda > 1/2$.

Proof: For any $t \in [0,1]$, solve the integral equation
\begin{equation}
(I - \lambda K_g)\alpha(s) = 0, \quad s \in [0,t].
\end{equation}
By differentiation, we obtain an ordinary differential equation
\begin{equation}
\frac{\alpha'(s)}{\alpha(s)} = \frac{g'(s)}{g(s)} + (\lambda - 1)\frac{g(s)^2}{\int_0^s g(u)^2 du}.
\end{equation}
Thus the general solution of (14) have the form
\begin{equation}
\alpha(s) = Cg(s) \left(\int_0^s g(u)^2 du\right)^{\lambda-1}, \quad s \in [0,t],
\end{equation}
where C is a constant. By virtue of the criterion for the canonical representation, The representation of X_λ is noncanonical if and only if α is square integrable. Because
\begin{equation}
\int_0^t \left\{ g(s) \left(\int_0^s g(u)^2 du\right)^{\lambda-1} \right\}^2 ds = \int_0^{(g,g)_{[0,t]}} x^{2(\lambda-1)} dx,
\end{equation}
(16) belongs to $L^2[0,t]$ if and only if $\lambda > 1/2$.

Remark. Some observations of the case of $g \equiv 1$ are given by Yor [6, p.8].

Acknowledgements: The authors would like to express their appreciation to the referees for comments for better understanding of the paper.

References

